Underwater Acoustic Ray Tracing in the SOFAR(Sound Fixing and Ranging) Channel using Python

Underwater Acoustic Ray Tracing in the SOFAR(Sound Fixing and Ranging) Channel using Python

Underwater Acoustic Ray Tracing in the SOFAR(Sound Fixing and Ranging) Channel using Python

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
from tqdm import tqdm

from IPython.display import HTML, display, Image
from matplotlib import animation
# SPEED_OF_SOUND_SURFACE = 1480  # meters / second
SOUND_SPEED_MIN = 1480
SOUND_SPEED_MAX = 1530

DEPTH_MIN = 0  # Ocean Surface
DEPTH_MAX = 5500  # meters
DEPTH_MIN_SPEED = 1100 # depth where minimum speed of sound is observed
DEPTH_RANGE = np.arange(DEPTH_MIN, DEPTH_MAX + 1)
SOUND_GRADIENT_SHALLOW = (SOUND_SPEED_MIN - SOUND_SPEED_MAX) / (DEPTH_MIN_SPEED - DEPTH_MIN)
SOUND_GRADIENT_DEEP = (SOUND_SPEED_MAX - SOUND_SPEED_MIN) / (DEPTH_MAX - DEPTH_MIN_SPEED)

# vectorize the sound gradients
# sound velocity gradient up to 1100 meters deep
sound_grad_shallow_vec  = np.full(
    (1, np.argwhere(DEPTH_RANGE == DEPTH_MIN_SPEED)[0][0]),
    SOUND_GRADIENT_SHALLOW
)
# sound velocity gradient beyond 1100 meters
sound_grad_deep_vec = np.full(
    (1, np.argmax(DEPTH_RANGE) - np.argwhere(DEPTH_RANGE == DEPTH_MIN_SPEED)[0][0]),
    SOUND_GRADIENT_DEEP
)

# construct the sound velocity profile
sound_velocity_profile = SOUND_SPEED_MIN + \
                            (DEPTH_RANGE[:-1] - DEPTH_MIN_SPEED) * \
                            np.append(sound_grad_shallow_vec, sound_grad_deep_vec)

# plot the sound velocity profile
fig = plt.figure(figsize=(8,6))
plt.plot(sound_velocity_profile, DEPTH_RANGE[:-1])
plt.plot([SOUND_SPEED_MIN],[DEPTH_MIN_SPEED], 'ro')
plt.gca().invert_yaxis()
plt.ylabel('Depth (m)')
plt.xlabel('Sound Velocity (m/s)')
plt.show()

png

SOURCE_DEPTH = DEPTH_MIN_SPEED
SOURCE_SOUND_SPEED = SOUND_SPEED_MIN
TRANSMISSION_ANGLE_RANGE = np.deg2rad(np.arange(-10, 11, 1))  # angle of transmission in rad
angle_0_ind = np.argwhere(TRANSMISSION_ANGLE_RANGE == 0)[0][0]  # index of the 0 degree mark
SIMULATION_STEPS = 20  # meters
SIMULATION_RANGE = np.arange(0, 200e3 + SIMULATION_STEPS, SIMULATION_STEPS)
# Instantiate our matrices
R = np.zeros((len(TRANSMISSION_ANGLE_RANGE), len(SIMULATION_RANGE)))
z = np.zeros_like(R)
c = np.zeros_like(R)
theta = np.zeros_like(R)

# Prime the initial conditions
z[:, 0] = DEPTH_MIN_SPEED  # we put the source at the depth of min sound speed
R[:, 0] = -SOURCE_SOUND_SPEED / np.append(
    SOUND_GRADIENT_SHALLOW * np.cos(TRANSMISSION_ANGLE_RANGE[:angle_0_ind+1]),
    SOUND_GRADIENT_DEEP * np.cos(TRANSMISSION_ANGLE_RANGE[angle_0_ind+1:]),
)
c[:, 0] = SOUND_SPEED_MIN
theta[:, 0] = TRANSMISSION_ANGLE_RANGE
for j in tqdm(range(1, len(SIMULATION_RANGE))):
    for i in range(0, len(TRANSMISSION_ANGLE_RANGE)):
        
        if (z[i, j-1] == SOURCE_DEPTH) and (theta[i, j-1] == 0):
            c[i, j] = SOURCE_SOUND_SPEED
            theta[i, j] = 0
            dz = 0
            z[i, j] = SOURCE_DEPTH
            
        elif (z[i, j-1] < SOURCE_DEPTH) or (z[i, j-1] == SOURCE_DEPTH and theta[i, j-1] > 0):
            R[i, j] = -c[i, j-1] / (SOUND_GRADIENT_SHALLOW * np.cos(theta[i ,j-1]))
            theta[i, j] = np.arcsin(
                SIMULATION_STEPS / R[i, j-1] + np.sin(theta[i, j-1])
            )
            dz = R[i, j-1] * (np.cos(theta[i, j-1]) - np.cos(theta[i, j]))
            z[i, j] = z[i, j-1] + dz
            c[i, j] = SOURCE_SOUND_SPEED + SOUND_GRADIENT_SHALLOW * (z[i, j] - SOURCE_DEPTH)
            
        elif (z[i, j-1] > SOURCE_DEPTH) or (z[i, j-1] == SOURCE_DEPTH and theta[i, j-1] < 0):
            R[i, j] = -c[i, j-1] / (SOUND_GRADIENT_DEEP * np.cos(theta[i ,j-1]))
            theta[i, j] = np.arcsin(
                SIMULATION_STEPS / R[i, j-1] + np.sin(theta[i, j-1])
            )
            dz = R[i, j-1] * (np.cos(theta[i, j-1]) - np.cos(theta[i, j]))
            z[i, j] = z[i, j-1] + dz
            c[i, j] = SOURCE_SOUND_SPEED + SOUND_GRADIENT_DEEP * (z[i, j] - SOURCE_DEPTH)

100%|██████████| 10000/10000 [00:03<00:00, 3283.26it/s]
plt.figure(figsize=(12,8))
for i in range(0, len(TRANSMISSION_ANGLE_RANGE)):
    plt.plot(SIMULATION_RANGE, z[i])
plt.gca().invert_yaxis()
plt.title('Acoustic Ray Tracing')
plt.xlabel('Range (m)')
plt.ylabel('Depth (m)')
plt.show()

png

duration_sec = 2
dpi = 100
bitrate = 100

fig, ax = plt.subplots(dpi=dpi)
fig.text(0.89, 0.14, '@Jay Patel',
             fontsize=12, color='black',
             ha='right', va='bottom', alpha=0.75)
fps = len(SIMULATION_RANGE) // duration_sec

GifWriter = animation.ImageMagickFileWriter(fps,
                                             bitrate=bitrate
                                             )
save_filename = 'SOFAR_ray_trace.gif'
with GifWriter.saving(fig, save_filename, dpi=dpi):
    for i in range(0, len(SIMULATION_RANGE) + 75, 75):
        plt.cla()
        ax.set_xlim(0, SIMULATION_RANGE[-1])
        ax.set_ylim(500, 3500)
        ax.set_title(f"Acoustic Ray Tracing \nSOFAR Channel")
        plt.gca().invert_yaxis()
        plt.xlabel('Range (m)')
        plt.ylabel('Depth (m)')
        for a in range(0, len(TRANSMISSION_ANGLE_RANGE)):
            ax.plot(SIMULATION_RANGE[:i], z[a,:i])
        GifWriter.grab_frame()
plt.close()

SegmentLocal


SOURCE_DEPTH = DEPTH_MIN_SPEED
SOURCE_SOUND_SPEED = SOUND_SPEED_MIN
TRANSMISSION_ANGLE_RANGE = np.deg2rad(np.arange(-20, 20, 1))  # angle of transmission in rad -20 to 20
angle_0_ind = np.argwhere(TRANSMISSION_ANGLE_RANGE == 0)[0][0]  # index of the 0 degree mark

SIMULATION_STEPS = 20  # meters
SIMULATION_RANGE = np.arange(0, 200e3 + SIMULATION_STEPS, SIMULATION_STEPS)

# Instantiate our matrices
R = np.zeros((len(TRANSMISSION_ANGLE_RANGE), len(SIMULATION_RANGE)))
z = np.zeros_like(R)
c = np.zeros_like(R)
theta = np.zeros_like(R)

# Prime the initial conditions
z[:, 0] = DEPTH_MIN_SPEED  # we put the source at the depth of min sound speed
R[:, 0] = -SOURCE_SOUND_SPEED / np.append(
    SOUND_GRADIENT_SHALLOW * np.cos(TRANSMISSION_ANGLE_RANGE[:angle_0_ind+1]),
    SOUND_GRADIENT_DEEP * np.cos(TRANSMISSION_ANGLE_RANGE[angle_0_ind+1:]),
)
c[:, 0] = SOUND_SPEED_MIN
theta[:, 0] = TRANSMISSION_ANGLE_RANGE

for j in tqdm(range(1, len(SIMULATION_RANGE))):
    for i in range(0, len(TRANSMISSION_ANGLE_RANGE)):
        
        if (z[i, j-1] == SOURCE_DEPTH) and (theta[i, j-1] == 0):
            c[i, j] = SOURCE_SOUND_SPEED
            theta[i, j] = 0
            dz = 0
            z[i, j] = SOURCE_DEPTH
            
        elif (z[i, j-1] < SOURCE_DEPTH) or (z[i, j-1] == SOURCE_DEPTH and theta[i, j-1] > 0):
            R[i, j] = -c[i, j-1] / (SOUND_GRADIENT_SHALLOW * np.cos(theta[i ,j-1]))
            theta[i, j] = np.arcsin(
                SIMULATION_STEPS / R[i, j-1] + np.sin(theta[i, j-1])
            )
            dz = R[i, j-1] * (np.cos(theta[i, j-1]) - np.cos(theta[i, j]))
            z[i, j] = z[i, j-1] + dz
            c[i, j] = SOURCE_SOUND_SPEED + SOUND_GRADIENT_SHALLOW * (z[i, j] - SOURCE_DEPTH)
            
        elif (z[i, j-1] > SOURCE_DEPTH) or (z[i, j-1] == SOURCE_DEPTH and theta[i, j-1] < 0):
            R[i, j] = -c[i, j-1] / (SOUND_GRADIENT_DEEP * np.cos(theta[i ,j-1]))
            theta[i, j] = np.arcsin(
                SIMULATION_STEPS / R[i, j-1] + np.sin(theta[i, j-1])
            )
            dz = R[i, j-1] * (np.cos(theta[i, j-1]) - np.cos(theta[i, j]))
            z[i, j] = z[i, j-1] + dz
            c[i, j] = SOURCE_SOUND_SPEED + SOUND_GRADIENT_DEEP * (z[i, j] - SOURCE_DEPTH)

plt.figure(figsize=(16,12))
for i in range(0, len(TRANSMISSION_ANGLE_RANGE)):
    plt.plot(SIMULATION_RANGE, z[i])
plt.gca().invert_yaxis()
plt.title('Acoustic Ray Tracing')
plt.xlabel('Range (m)')
plt.ylabel('Depth (m)')
plt.show()
100%|██████████| 10000/10000 [00:06<00:00, 1616.31it/s]

png

duration_sec = 2
dpi = 100
bitrate = 100

fig, ax = plt.subplots(dpi=dpi)
fig.text(0.89, 0.14, '@Jay Patel',
             fontsize=12, color='black',
             ha='right', va='bottom', alpha=0.75)
fps = len(SIMULATION_RANGE) // duration_sec

GifWriter = animation.ImageMagickFileWriter(fps,
                                             bitrate=bitrate
                                             )
save_filename = 'SOFAR_ray_trace_1.gif'
with GifWriter.saving(fig, save_filename, dpi=dpi):
    for i in range(0, len(SIMULATION_RANGE) + 75, 75):
        plt.cla()
        ax.set_xlim(0, SIMULATION_RANGE[-1])
        ax.set_ylim(500, 3500)
        ax.set_title(f"Acoustic Ray Tracing \nSOFAR Channel")
        plt.gca().invert_yaxis()
        plt.xlabel('Range (m)')
        plt.ylabel('Depth (m)')
        for a in range(0, len(TRANSMISSION_ANGLE_RANGE)):
            ax.plot(SIMULATION_RANGE[:i], z[a,:i])
        GifWriter.grab_frame()
plt.close()

SegmentLocal


References

1. https://brentonmallen.com/posts/underwater-acoustic-ray-tracing/
Jay Patel
Jay Patel
PhD in Electrical & Computer Engineering

My research interests include electronics & communications, distributed underwater robotics, mobile computing and programmable matter.

Next