Bedford Bathy Plotting using python

Photo by rawpixel on Unsplash

Bedford Bathy Plotting using Python


# Author : Jay Patel
# 3D Bedford basin bathy

import plotly.graph_objects as go

import pandas as pd

# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')

fig = go.Figure(data=[go.Surface(z=z_data.values)])

fig.update_layout(title='Bedford Basin Elevation', autosize=True,
                   width=900, height=900,
                   margin=dict(l=65, r=50, b=65, t=90))

fig.show()

png

#  cmap=plt.cm.viridis, linewidth=0.2
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))

png

Surface Plot With Contours

import plotly.graph_objects as go

import pandas as pd

# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')

fig = go.Figure(data=[go.Surface(z=z_data.values)])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))
fig.update_layout(title='Bedford Basin Elevation', autosize=True,
                   width=900, height=900,
                   margin=dict(l=65, r=50, b=65, t=90))

fig.show()

png

import plotly.graph_objects as go
import numpy as np
import pandas as pd

# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(44.66875, 44.74791667, sh_0), np.linspace(-63.69791667, -63.52708333, sh_1)
import plotly.graph_objects as go
import pandas as pd
import numpy as np
# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(44.66875, 44.74791667, sh_0), np.linspace(-63.69791667, -63.52708333, sh_1)
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))
fig.update_layout(title='Bedford Basin Elevation', autosize=True,
                  width=900, height=900, 
                  margin=dict(l=65, r=50, b=65, t=90))
fig.update_layout=dict(xaxis=dict(title='Latitude'),
                  yaxis=dict(title='Longitude'))
fig.show()

png

Configure Surface Contour Levels

import plotly.graph_objects as go
import pandas as pd
import numpy as np

# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(44.66875, 44.74791667, sh_0), np.linspace(-63.69791667, -63.52708333, sh_1)
# fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])

fig = go.Figure(go.Surface(
    contours = {
        "x": {"show": True, "start": 44.66875, "end": 44.74791667, "size": 0.04, "color":"white"},
        "z": {"show": True, "start": -63.69791667, "end": -63.52708333, "size": 0.05}
    },
    z=z, x=x, y=y))
fig.update_layout(
        scene = {
            "xaxis": {"nticks": 20},
            "zaxis": {"nticks": 8},
            'camera_eye': {"x": 0, "y": -1, "z": 0.5},
            "aspectratio": {"x": 1, "y": 1, "z": 0.2}
        })
fig.show()

png

import plotly.graph_objects as go
import pandas as pd
import numpy as np
# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(44.66875, 44.74791667, sh_0), np.linspace(-63.69791667, -63.52708333, sh_1)
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))
fig.update_layout(title='<b>Bedford Basin Elevation</b>',xaxis_title="Latitude", 
                  yaxis_title="Longitude",autosize=True,
                  margin=dict(l=65, r=50, b=65, t=90))
fig.update_layout(scene = dict(
                    xaxis_title='Latitude',
                    yaxis_title='Longitude',
                    zaxis_title='Elevation')
                    )  
# fig.update_layout(color='Elevation')
fig.update_layout(coloraxis_colorbar=dict(
    title="Elevation",
    thicknessmode="pixels", thickness=50,
    lenmode="pixels", len=200,
    yanchor="top", y=1,
    ticks="outside", ticksuffix="",
    dtick=5
))
fig.show()

png

import plotly.graph_objects as go
import pandas as pd
import numpy as np
# Read data from a csv
z_data = pd.read_csv('bathy_bedford.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(44.66875, 44.74791667, sh_0), np.linspace(-63.69791667, -63.52708333, sh_1)
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y,colorscale='Viridis')])
"""The 'colorscale' property is a colorscale and may be
    specified as:
      - A list of colors that will be spaced evenly to create the colorscale.
        Many predefined colorscale lists are included in the sequential, diverging,
        and cyclical modules in the plotly.colors package.
      - A list of 2-element lists where the first element is the
        normalized color level value (starting at 0 and ending at 1), 
        and the second item is a valid color string.
        (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])
      - One of the following named colorscales:
            ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
             'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg',
             'brwnyl', 'bugn', 'bupu', 'burg', 'burgyl', 'cividis', 'curl',
             'darkmint', 'deep', 'delta', 'dense', 'earth', 'edge', 'electric',
             'emrld', 'fall', 'geyser', 'gnbu', 'gray', 'greens', 'greys',
             'haline', 'hot', 'hsv', 'ice', 'icefire', 'inferno', 'jet',
             'magenta', 'magma', 'matter', 'mint', 'mrybm', 'mygbm', 'oranges',
             'orrd', 'oryel', 'peach', 'phase', 'picnic', 'pinkyl', 'piyg',
             'plasma', 'plotly3', 'portland', 'prgn', 'pubu', 'pubugn', 'puor',
             'purd', 'purp', 'purples', 'purpor', 'rainbow', 'rdbu', 'rdgy',
             'rdpu', 'rdylbu', 'rdylgn', 'redor', 'reds', 'solar', 'spectral',
             'speed', 'sunset', 'sunsetdark', 'teal', 'tealgrn', 'tealrose',
             'tempo', 'temps', 'thermal', 'tropic', 'turbid', 'twilight',
             'viridis', 'ylgn', 'ylgnbu', 'ylorbr', 'ylorrd'].
        Appending '_r' to a named colorscale reverses it."""
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))
fig.update_layout(title='Bedford Basin Elevation',xaxis_title="Latitude", 
                  yaxis_title="Longitude",autosize=False,
                  width=900, height=900, 
                  margin=dict(l=65, r=50, b=65, t=90))
fig.update_layout(scene = dict(
                    xaxis_title='Latitude',
                    yaxis_title='Longitude',
                    zaxis_title='Elevation'),
                    margin=dict(r=20, b=10, l=10, t=10))  
# fig.update_layout(color='Elevation')
fig.update_layout(coloraxis_colorbar=dict(
    title="Elevation",
    thicknessmode="pixels", thickness=50,
    lenmode="pixels", len=200,
    yanchor="top", y=1,
    ticks="outside", ticksuffix="",
    dtick=5
))
fig.show()

png

Appendix Bathy Data

z_data

Unnamed: 0 44.66875 44.67291667 44.67708333 44.68125 44.68541667 44.68958333 44.69375 44.69791667 44.70208333 ... 44.71041667 44.71458333 44.71875 44.72291667 44.72708333 44.73125 44.73541667 44.73958333 44.74375 44.74791667
lon
0 -63.697917 76.949219 77.085938 94.507813 109.914060 111.292970 88.378906 51.730469 47.687500 59.089844 ... 46.628906 39.363281 44.792969 52.582031 41.074219 32.304688 31.945313 37.171875 31.265625 35.207031
1 -63.693750 74.859375 75.480469 88.718750 104.511720 102.984380 72.757813 51.261719 57.562500 68.406250 ... 46.140625 35.457031 41.566406 46.582031 44.464844 43.144531 48.738281 41.949219 28.066406 41.425781
2 -63.689583 76.234375 75.566406 80.800781 85.156250 76.046875 55.621094 57.980469 73.234375 78.527344 ... 51.320313 30.578125 33.000000 44.218750 57.890625 63.746094 67.226563 60.589844 43.121094 37.597656
3 -63.685417 78.855469 77.718750 70.976563 61.859375 52.851563 54.816406 72.570313 84.394531 86.800781 ... 56.378906 30.882813 33.000000 52.328125 71.847656 84.273438 86.675781 79.574219 53.785156 28.941406
4 -63.681250 75.035156 67.761719 68.031250 65.218750 56.160156 68.144531 88.738281 93.468750 92.445313 ... 49.884766 24.603516 39.861328 64.859375 78.960938 86.257813 86.726563 84.812500 65.078125 40.824219
5 -63.677083 76.906250 68.015625 77.792969 76.507813 65.015625 77.984375 93.171875 95.757813 91.152344 ... 38.843773 14.459333 32.611832 63.052898 77.476563 83.761719 84.460938 82.933594 75.851563 53.343750
6 -63.672917 86.007813 81.906250 84.183594 79.460938 68.863281 74.460938 85.843750 89.839844 85.406250 ... 26.064667 -1.506614 12.861200 38.809372 63.070324 80.605469 85.308594 90.867188 82.867188 51.437500
7 -63.668750 95.003906 87.734375 72.562500 59.613281 62.312500 71.199219 72.628906 75.960938 75.221703 ... 9.954909 -11.974573 -4.805872 10.340685 43.335861 69.769524 76.273438 85.203125 71.476563 42.464844
8 -63.664583 97.148438 82.492188 64.988281 39.218735 43.938225 61.325375 49.881237 48.452190 52.963917 ... -1.673647 -8.128887 -10.653625 -4.688946 14.444967 40.492226 61.402344 61.308594 36.449219 18.914063
9 -63.660417 93.011719 83.011719 67.464821 28.027519 13.340724 22.575760 15.632376 6.809888 5.132569 ... -11.897992 -4.807637 3.286820 2.604772 5.671644 15.168005 27.855469 26.628906 10.945313 9.710938
10 -63.656250 92.898438 83.511719 55.145008 13.209535 -12.264346 -15.117385 -14.321301 -25.995922 -33.472305 ... -10.248625 8.080005 22.323267 20.934570 18.535183 15.214840 10.484375 12.101563 13.371094 24.375000
11 -63.652083 84.066406 64.296883 34.605164 2.242018 -22.517729 -30.148781 -34.749718 -41.952374 -41.779312 ... -3.999856 18.022432 42.588451 54.158203 35.542969 23.964844 23.730469 32.246094 38.230469 42.855469
12 -63.647917 65.445313 35.112190 6.273511 -16.426867 -32.295547 -41.835163 -51.907791 -56.872074 -45.036800 ... -2.225338 19.091228 53.738281 79.640625 58.265625 38.929688 38.921875 47.968750 60.488281 57.257813
13 -63.643750 43.226688 9.875418 -14.144128 -31.821207 -45.913952 -56.445293 -62.944271 -68.338936 -49.653156 ... -0.736164 20.028435 52.000000 77.394531 72.148438 60.503906 59.429688 56.027344 61.492188 60.273438
14 -63.639583 14.007681 -8.914713 -18.772408 -34.815582 -55.949837 -66.089462 -65.168015 -66.465927 -45.641136 ... 9.421118 38.420048 67.453125 75.691406 78.402344 80.929688 79.390625 64.707031 54.890625 51.156250
15 -63.635417 -7.310585 -18.513680 -22.575047 -35.414024 -54.700890 -63.991642 -62.630890 -56.582676 -35.162735 ... 26.824617 60.225838 77.328125 71.515625 79.382813 91.691406 88.488281 75.808594 57.250000 43.339844
16 -63.631250 -12.959548 -20.553957 -24.011562 -33.425610 -49.952095 -57.807667 -58.452568 -50.320042 -22.114317 ... 39.627213 56.666016 64.625000 60.617188 69.382813 84.894531 89.250000 83.457031 64.105469 44.339844
17 -63.627083 -13.959131 -20.879896 -24.619675 -30.599531 -42.064625 -46.732735 -45.736958 -38.605583 -8.134238 ... 38.142117 44.251953 49.472656 46.933594 51.566406 70.160156 81.511719 80.933594 70.406250 52.523438
18 -63.622917 0.690808 -9.467150 -21.900442 -26.936838 -27.090944 -28.230453 -25.843157 -19.252031 -2.559922 ... 29.576172 41.527344 44.617188 40.628906 38.910156 55.820313 72.777344 76.660156 72.941406 60.238281
19 -63.618750 33.239319 19.398363 -8.281146 -21.531794 -14.405942 -5.457515 -5.439976 -7.815783 -0.274054 ... 29.634766 42.472656 45.640625 40.773438 37.476563 48.804688 69.843750 79.410156 73.281250 65.578125
20 -63.614583 63.578960 33.142456 -8.284787 -10.527703 4.501016 15.951009 6.856074 -5.995221 2.971732 ... 31.964844 38.089844 43.308594 42.519531 44.750000 54.101563 69.886719 82.687500 73.929688 67.136719
21 -63.610417 70.817719 25.925608 -10.230622 9.744920 24.152803 21.304670 7.644289 -0.897256 6.740877 ... 33.261719 35.636719 38.226563 43.644531 51.324219 59.398438 65.488281 77.003906 81.035156 76.835938
22 -63.606250 55.557236 14.203660 -1.720311 16.641088 17.982437 11.728527 5.558494 5.703025 13.886730 ... 35.199219 36.750000 35.355469 40.335938 48.804688 53.933594 57.835938 67.910156 80.523438 86.218750
23 -63.602083 36.025299 2.190290 -1.339007 7.554595 6.734375 5.597656 4.179688 11.597656 26.957031 ... 44.718750 45.003906 39.687500 39.195313 46.054688 47.675781 51.292969 58.550781 69.648438 80.183594
24 -63.597917 8.810258 -4.524801 3.006743 5.879006 13.291016 18.996094 20.617188 26.906250 43.632813 ... 63.082031 58.554688 49.054688 45.753906 52.464844 47.886719 43.769531 49.820313 60.265625 69.031250
25 -63.593750 -10.357846 -2.310211 18.718382 29.412100 43.144531 47.375000 47.613281 46.789063 59.468750 ... 75.718750 64.488281 52.425781 54.796875 58.187500 51.171875 40.628906 39.328125 48.031250 54.558594
26 -63.589583 -4.446059 15.267798 35.644077 52.505859 66.007813 64.027344 60.007813 61.343750 70.480469 ... 73.003906 57.976563 57.664063 70.316406 61.886719 50.070313 41.804688 32.093750 34.121094 39.796875
27 -63.585417 10.070802 28.118652 42.909988 55.316406 68.027344 68.339844 63.441406 68.449219 72.671875 ... 68.878906 57.375000 72.867188 88.558594 67.378906 46.589844 40.140625 31.371094 26.300781 28.425781
28 -63.581250 23.047089 35.031254 47.410156 55.835938 64.968750 65.921875 65.269531 69.433594 68.640625 ... 70.011719 68.484375 81.964844 88.378906 71.328125 54.429688 46.496094 37.613281 29.402344 24.605469
29 -63.577083 29.660294 43.933594 54.765625 58.503906 59.875000 61.269531 65.808594 68.250000 67.292969 ... 70.148438 77.992188 85.140625 82.308594 73.621094 66.183594 63.078125 57.390625 40.878906 25.000000
30 -63.572917 31.014334 53.011719 65.511719 69.812500 67.406250 64.480469 65.234375 66.082031 67.046875 ... 70.800781 80.218750 82.531250 79.597656 74.093750 72.089844 72.535156 68.304688 53.062500 32.714844
31 -63.568750 26.085461 48.626953 68.445313 77.644531 72.324219 64.750000 60.253906 59.281250 59.570313 ... 74.175781 85.882813 81.031250 76.011719 74.222656 71.539063 68.039063 67.273438 59.007813 35.109375
32 -63.564583 15.733856 28.271484 46.269531 63.753906 64.000000 55.468750 47.593750 43.093750 44.507813 ... 73.300781 93.609375 85.214844 72.902344 68.187500 62.113281 55.867188 57.050781 48.832031 41.835938
33 -63.560417 16.391357 28.580078 28.265625 37.042969 50.828125 42.882813 29.406250 26.296875 34.031250 ... 65.316406 89.085938 79.992188 62.281250 57.343750 50.035156 42.109375 37.054688 40.128906 63.527344
34 -63.556250 35.735107 51.728516 35.523438 20.843750 34.964844 29.890625 18.320313 21.328125 33.257813 ... 47.628906 59.199219 56.316406 43.554688 39.011719 34.664063 31.308594 35.773438 59.132813 83.457031
35 -63.552083 53.774876 60.871094 40.660156 18.941406 21.210938 20.207031 18.796875 25.796875 40.980469 ... 30.445313 29.199219 31.417969 28.507813 24.871094 25.457031 33.128906 51.968750 77.597656 94.570313
36 -63.547917 59.230469 61.367188 51.703125 33.691406 26.390625 21.757813 19.949219 37.359375 56.464844 ... 38.128906 30.468750 30.625000 34.699219 36.746094 40.019531 50.718750 66.621094 84.746094 97.382813
37 -63.543750 64.832031 66.406250 59.792969 45.585938 34.242188 29.488281 38.558594 64.308594 76.347656 ... 61.476563 45.535156 39.082031 46.347656 49.382813 54.738281 62.695313 77.050781 95.820313 99.855469
38 -63.539583 73.113281 61.929688 49.589844 38.644531 39.300781 55.171875 74.441406 85.554688 88.195313 ... 72.500000 57.628906 44.191406 47.347656 54.886719 62.109375 73.921875 90.792969 101.320310 99.058594
39 -63.535417 63.765625 50.531250 45.089844 43.453125 57.082031 78.214844 90.632813 90.097656 85.585938 ... 71.574219 60.835938 50.472656 54.304688 69.460938 77.367188 83.960938 95.863281 101.292970 97.675781
40 -63.531250 47.578125 44.156250 48.628906 55.949219 64.972656 76.601563 88.078125 92.406250 87.617188 ... 68.554688 61.691406 59.355469 67.031250 82.750000 91.019531 90.761719 94.960938 96.988281 93.632813
41 -63.527083 41.800781 44.277344 50.859375 59.894531 68.699219 77.902344 88.875000 92.273438 87.335938 ... 70.550781 65.195313 65.718750 73.437500 86.222656 93.308594 92.941406 93.285156 90.976563 90.335938
42 -63.527083 41.800781 44.277344 50.859375 59.894531 68.699219 77.902344 88.875000 92.273438 87.335938 ... 70.550781 65.195313 65.718750 73.437500 86.222656 93.308594 92.941406 93.285156 90.976563 90.335938

43 rows × 21 columns

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import plotly.graph_objects as go
import pandas as pd
import numpy as np

df = pd.read_csv('POINT_DATA_TITLE.csv')
df.head()

x y z
0 -63.690000 44.738333 57
1 -63.689792 44.738333 57
2 -63.689583 44.738333 57
3 -63.689375 44.738333 56
4 -63.689167 44.738333 56
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
# from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib import rc, rcParams
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
import matplotlib.gridspec as gridspec

# 2D-arrays from DataFrame
x1 = np.linspace(df['x'].min(), df['x'].max(), len(df['x'].unique()))
y1 = np.linspace(df['y'].min(), df['y'].max(), len(df['y'].unique()))

"""
x, y via meshgrid for vectorized evaluation of
2 scalar/vector fields over 2-D grids, given
one-dimensional coordinate arrays x1, x2,..., xn.
"""

x2, y2 = np.meshgrid(x1, y1)

# Interpolate unstructured D-dimensional data.
z2 = griddata((df['x'], df['y']), df['z'], (x2, y2), method='cubic')

# Ready to plot

fig = plt.figure(211,figsize=(15,20))
ax = fig.add_subplot(211, projection='3d')
spec = gridspec.GridSpec(ncols=1, nrows=2,
                         height_ratios=[4, 1])

surf = ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.terrain,
                       linewidth=1, antialiased=False)
ax.view_init(45,-55)

cset = ax.contourf(x2, y2, z2, zdir='z2', offset=-80, cmap=cm.terrain, antialiased=True)

rcParams['legend.fontsize'] = 20

rc('text', usetex=True)
rc('axes', linewidth=2)
rc('font', weight='bold')


rcParams['text.latex.preamble'] = [r'\usepackage{sfmath} \boldmath']

ax.xaxis.set_tick_params(labelsize=20)
ax.yaxis.set_tick_params(labelsize=20)
ax.zaxis.set_tick_params(labelsize=20)
ax.set_zticks([-70, -50, -30, -10, 10, 30, 50, 70, 90, 110])
plt.title(r'\textbf{Bedford Basin Bathymatry}', fontsize=20)
plt.xlabel(r'\textbf{Latitude}', fontsize=20, labelpad= 23)
plt.ylabel(r'\textbf{Longitude}', fontsize=20, labelpad= 20)
ax.set_zlabel(r'\textbf{Elevation}', fontsize=20, labelpad= 10)

fig.savefig('Bedford_BASIN_BATHY_view5.png', dpi=600)


import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots(figsize=(15, 1))
# ax = fig.add_subplot(111)
fig.subplots_adjust(bottom=0.5)

cmap = mpl.cm.terrain
norm = mpl.colors.Normalize(vmin=-80, vmax=100)

cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
                                norm=norm,
                                orientation='horizontal')
cb1.set_label('Elevation', fontsize=20, weight='bold')
plt.setp(ax.get_xticklabels(), fontsize=20)

fig.savefig('Bedford_BASIN_BATHY_view8.png', dpi=600)
plt.show()

png

png

import matplotlib.pyplot as plt
import matplotlib as mpl

left, width = 0.07, 0.65
bottom, height = 0.1, .8
bottom_h = left_h = left+width+0.02

rect_cones = [left, bottom, width, height]
rect_box = [left_h, bottom, 0.05, height]

fig = plt.figure(figsize=(14,7), dpi=300)

cones = plt.axes(rect_cones,projection='3d')
box = plt.axes(rect_box)

cones.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.terrain,
                        linewidth=1, antialiased=False)
cones.set_zlim([-80, 110])
cones.view_init(45,-55)
cset = cones.contourf(x2, y2, z2, zdir='z2', offset=-80, cmap=cm.terrain, antialiased=True)

rcParams['legend.fontsize'] = 20

rc('text', usetex=True)
rc('axes', linewidth=2)
rc('font', weight='bold')

rcParams['text.latex.preamble'] = [r'\usepackage{sfmath} \boldmath']

cones.xaxis.set_tick_params(labelsize=20)
cones.yaxis.set_tick_params(labelsize=20)
cones.zaxis.set_tick_params(labelsize=20)
cones.set_xlabel('Latitude', fontsize=20, labelpad= 23, weight='bold')
cones.set_ylabel('Longitude', fontsize=20, labelpad= 20, weight='bold')
cones.set_zlabel('Elevation', fontsize=20, labelpad= 10, weight='bold')

fig.suptitle('Bedford Basin Bathymatry', fontsize=20, weight='bold')
cmap = mpl.cm.terrain
norm = mpl.colors.Normalize(vmin=-80, vmax=110)

cb1 = mpl.colorbar.ColorbarBase(box, cmap=cmap,
                                norm=norm,
                                orientation='vertical', extend='both')
plt.setp(box.get_yticklabels(), fontsize=16);

fig.savefig('Bedford_BASIN_BATHY_Final_fig.png', dpi=600)

png

Jay Patel
Jay Patel
PhD in Electrical & Computer Engineering

My research interests include electronics & communications, distributed underwater robotics, mobile computing and programmable matter.

Next

Related